



# LOW POWER INSTRUMENT TRANSFORMERS

Voltage and current sensors for primary and secondary distribution networks



SENSORS

ZELISKO

ENERGY

## LOW POWER INSTRUMENT TRANSFORMER FOR MEDIUM AND HIGH VOLTAGE APPLICATIONS UP TO 72,5 KV AND 4000 A

The digital technology landscape's evolution requires reevaluating criteria for instrument transformers (ITs) in measurement and protection. Modern secondary equipment no longer requires the high-power output characteristic of traditional ITs, unlike their predecessors designed for electromechanical relays. Since 2012, Zelisko has responded to this by manufacturing low power ITs, referred to as current and voltage sensors. These devices fulfill various roles including power flow monitoring, grid control, and fault detection with directional determination. Moreover, they facilitate active generation and load management. Zelisko's U/I sensors adhere strictly to IEC61869-6/10/11 standards, ensuring regulatory adherence.



Against the backdrop of climate change, the energy transition necessitates a substantial increase in the adoption of renewable energies (RE) to mitigate greenhouse gas emissions, particularly in wind energy and photovoltaics. Challenges facing the electricity sector include expanding transmission and distribution grids, as well as addressing issues such as e-mobility and energy storage. Notably, enhancing the intelligence of the medium-voltage (MV) distribution grid holds significant importance in this context. These sensors find application across diverse fields such as Indoor/Outdoor environments, Air Insulated Switchgear, and Gas Insulated Switchgear. Special emphasis is placed on ensuring the long-term stability of measured values, particularly in challenging environmental conditions characterized by wide temperature ranges and high humidity levels. In addition, the sensors' specialized variant extends their functionality to include measuring harmonics up to 9 kHz\*:





Ensuring essential security of electricity supply, voltage quality, and grid stability necessitates an intelligent medium-voltage (MV) distribution grid. Possible strategies include remote monitoring and control automation, as well as precise generation and load management through wide-range regulation.

SENSORS ZELISKO ENERGY

### ZELISKO LPIT FUNCTIONAL PRINCIPLE AND ERROR LIMITS

#### LOW POWER VOLTAGE TRANSFORMER

**LPVT** Low-power voltage transformers from Zelisko are passive instruments employing a compensated resistive divider. Specifically engineered for medium and high voltage protection and measurement systems. Comprising two resistive elements, this transformer divides the input signal to yield a standardized output value that operates without saturation and correction factor. The voltage sensors are offered in various configurations for primary and secondary distribution switchgears, accommodating system voltages of up to 72.5 kV.

### LOW POWER COMBINED TRANSFORMER

A combined low-power transformer integrates multiple functions typically found in separate voltage and current sensor into a single unit, thereby reducing space requirements, installation complexity, and costs. It is engineered for outdoor applications, functioning both as a bushing type for gas-insulated switchgear and as a block type configuration.

### LOW POWER CURRENT TRANSFORMER

**IC-LPCT** Low-power current transformers for secondary distribution from Zelisko are passive instruments that operate on the principle of a ring core transformer equipped with an integrated precision shunt resistor to provide a voltage output directly correlated to the primary current.

**EFD-IC-LPCT** The earth fault detection sensor surveils the electrical system, detecting irregularities in current flow due to a displacement of the neutral point or insulation resistance.

**Rogowski-LPCT** Rogowski coil functions based on electromagnetic induction. The alternating current generates a changing magnetic field, which in turn induces a voltage in the coil's winding. This induced voltage is directly proportional to the rate of change of current flowing through the conductor.

| ACCURACY LIMITS FOR MEASURING LPVT<br>at rated burden and voltage between 80% and 120% of the rated voltage |                  |                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------|-------------------------|--|--|--|--|--|
| Accuracy class                                                                                              | Ratio error ±(%) | Phase error $\pm$ (min) |  |  |  |  |  |
| 0,2                                                                                                         | 0,2              | 10                      |  |  |  |  |  |
| 0,5                                                                                                         | 0,5              | 20                      |  |  |  |  |  |
| 1                                                                                                           | 1,0              | 40                      |  |  |  |  |  |
| 1                                                                                                           | 1 1,0 40         |                         |  |  |  |  |  |

| ACCURACY LIMITS FOR PROTECTIVE AND MULTIPURPOSE LPVT |                                           |    |     |     |         |                                             |     |     |     |         |
|------------------------------------------------------|-------------------------------------------|----|-----|-----|---------|---------------------------------------------|-----|-----|-----|---------|
|                                                      | Ratio error ±(%) Percent of rated voltage |    |     |     |         | Phase error ±(min) Percent of rated voltage |     |     |     |         |
| Accuracy<br>class                                    |                                           |    |     |     |         |                                             |     |     |     |         |
|                                                      | 2                                         | 20 | 80  | 100 | 120/190 | 2                                           | 20  | 80  | 100 | 120/190 |
| 0,5P                                                 | 2                                         | 1  | 0,5 | 0,5 | 0,5     | 80                                          | 40  | 20  | 20  | 20      |
| 3P                                                   | 6                                         | 3  | 3   | 3   | 3       | 240                                         | 120 | 120 | 120 | 120     |
| 6P                                                   | 12                                        | 6  | 6   | 6   | 6       | 240                                         | 240 | 240 | 240 | 240     |

#### ACCURACY LIMITS FOR MEASURING LPCT

|                   |                          |      | Ratio error ±(9 | 6)  |      | Phase error $\pm$ (min)  |     |    |         |      |
|-------------------|--------------------------|------|-----------------|-----|------|--------------------------|-----|----|---------|------|
| Accuracy<br>class | Percent of rated voltage |      |                 |     |      | Percent of rated voltage |     |    | voltage |      |
|                   | 2                        | 5    | 20              | 100 | Kpcr | 2                        | 5   | 20 | 100     | Kpcr |
| 0,2S              | 0,75                     | 0,35 | 0,2             | 0,2 | 0,2  | 30                       | 15  | 10 | 10      | 10   |
| 0,2               | -                        | 0,75 | 0,35            | 0,2 | 0,2  | -                        | 30  | 15 | 10      | 10   |
| 0,5S              | 1,5                      | 0,75 | 0,5             | 0,5 | 0,5  | 90                       | 45  | 30 | 30      | 30   |
| 0,5               | -                        | 1,5  | 0,75            | 0,5 | 0,5  | -                        | 90  | 45 | 30      | 30   |
| 1,0               | -                        | 3,0  | 1,5             | 1,0 | 1,0  | -                        | 180 | 90 | 60      | 60   |

| ACCURACY LIMITS FOR PROTECTIVE PASSIVE LPCT<br>at rated frequency and rated primary current |   |    |    |  |  |  |
|---------------------------------------------------------------------------------------------|---|----|----|--|--|--|
| Accuracy class Ratio error ±(%) Phase error ±(min) Composite error (%)                      |   |    |    |  |  |  |
| 5P                                                                                          | 1 | 60 | 5  |  |  |  |
| 10P                                                                                         | 3 | -  | 10 |  |  |  |

SENSORS

ZELISKO

ENERGY

## STANDARD CONFIGURATION OPTIONS FOR AUTOMATED RMU

### **Original Equipment**



1x SMCS3-JW1004 (multifunction current sensor) 3x SMVS-UW1001 (voltage sensor)



3x SMCS-JW1001 (current sensor) 3x SMVS-UW1001 (voltage sensor)



2x SMCS-JW1001 (current sensor) 3x SMVS-UW1001 (voltage sensor) 1x GAE120/SENS (sensors for earth fault detection)

### Retrofit



2x SMCS/T-JW1002 (current sensor) 3x SMVS-UW1001 (voltage sensor) 1x GAE120/SENS (sensors for earth fault detection)



3x SMCS/T-JW1002 (current sensor) 3x SMVS-UW1001 (voltage sensor) 1x GAE120/SENS (sensors for earth fault detection)



3x SMCS-JW1002 (current sensor) 3x SMVS-UW1001 (voltage sensor)

| ZELISKO LPVT | MANUFACTURER     | COMPATIBLE T-PLUG TYPE                                     |
|--------------|------------------|------------------------------------------------------------|
|              | Nexans/Euromold: | 400TB/G, 440TB/G, K400TB/G, K440TB/G, 400PB-XSA, KAA4      |
| UW1001       | Südkabel:        | SEHDT 13, SEHDT 23, SEHDT 33, MUT 33                       |
|              | TE Con/Raychem   | RSTS-250A-C-RT-EL                                          |
|              | NKT              | CB-12, CB-24, CB-36, CC-12, CC-24, CC-36                   |
| UW1002-0     | TE Con/Raychem   | RSTI-58XX, RSTI-CC-58XX, RSTI-68XX, RSTI-59xx              |
|              | Ensto            | CONT630-24Lxx                                              |
| 1114/1002 1  | Nexans/Euromold  | 430TB, K430TB, 300PB/G, K300PB/G                           |
| 0 00 1002-1  | Südkabel         | SET24, SEHDT 23.1, SAT24                                   |
| UW1002-2     | Cellpack         | CTS 630 A                                                  |
|              | Nevers (Europedd | (K)(M)480TB/G, (K)(M)484TB/G, (K)(M)489TB/G (K)(M)800PB/G; |
| 0 10 1002-3  | Nexans/Euromold  | (K)(M)804PB/G, (K)(M)809PB/G, (K)(M)800SA                  |
| UW1002-5     | Chardon          | FDT630; RDT630                                             |
| 104/1004     | Nexans/Euromold  | R909TB/G                                                   |
| 0 vv 1004    | NKT              | СВ 72                                                      |

SENSORS ENI

ZELISKO ENERGY

| STANDARD VALUES |          | SECONDARY                | BURDEN: 2 MΩ; 50pF               |                |                                                               |
|-----------------|----------|--------------------------|----------------------------------|----------------|---------------------------------------------------------------|
| PRODUCT         | ТҮРЕ     | MAX. INSULATION<br>LEVEL | MAX. PRIMARY<br>RATED<br>VOLTAGE | APPLICATION    | PRIMARY INTERFACE                                             |
|                 |          | PRIMARY                  | DISTRIBUTION                     |                |                                                               |
|                 | UW1005-1 | 24/50/125 kV             | 22000/√3 V                       | GIS            | cable plug size 1 for inner<br>cone system<br>acc. to EN50181 |
|                 | UW1005-2 | 40,5/85/200 kV           | 36000/√3 V                       | GIS            | cable plug size 2 for inner<br>cone system<br>acc. to EN50181 |
|                 | UW1005-3 | 52/95/250 kV             | 45000/√3 V                       | GIS            | cable plug size 3 for inner<br>cone system<br>acc. to EN50181 |
|                 |          | SECONDAR                 | Y DISTRIBUTIO                    | N              | T-plug brand see page 4                                       |
|                 | UW1001   | 40,5/85/200 kV           | 36000/√3 V                       | GIS            | Interface type C<br>acc. to EN50181                           |
|                 | UW1002-0 | 40,5/85/200 kV           | 36000/√3 V                       | GIS            | asymmetrical interface                                        |
|                 | UW1002-1 | 36/70/170 kV             | 33000/√3 V                       | GIS            | asymmetrical interface                                        |
|                 | UW1002-2 | 36/70/170 kV             | 33000/√3 V                       | GIS            | asymmetrical interface                                        |
|                 | UW1002-3 | 40,5/85/200 kV           | 36000/√3 V                       | GIS            | asymmetrical interface                                        |
|                 | UW1002-5 | 36/70/170 kV             | 33000/√3 V                       | GIS            | asymmetrical interface                                        |
|                 | UW1004   | 72,5/145/325 kV          | 66000/√3 V                       | GIS            | Interface type F<br>acc. to EN50181                           |
|                 | UW1013   | 36/70/170 kV             | 33000/√3 V                       | AIS<br>indoor  | -                                                             |
|                 | UW1020   | 36/70/170 kV             | 33000/√3 V                       | AIS<br>outdoor | -                                                             |

# **PRODUCT OVERVIEW – Low power voltage transformer**

SENSORS

ZELISKO ENERGY

| STANDARD VALUES      |        |                             | SECONDARY RATED V             | BURDEN: ≥ 20 kΩ                                         |                                                                       |  |  |  |
|----------------------|--------|-----------------------------|-------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| PRODUCT              | ТҮРЕ   | MAX.<br>INSULATION<br>LEVEL | MAX. PRIMARY<br>RATED CURRENT | APPLICATION                                             | PRODUCT FEATURES                                                      |  |  |  |
| PRIMARY DISTRIBUTION |        |                             |                               |                                                         |                                                                       |  |  |  |
| Ò                    | JW100X | 0,72/3 kV                   | Up to 4000 A                  | GIS / AIS<br>Rogowski Technology<br>ID up to<br>Ø 300mm | Ratio on customer request<br>e.g. 22,5mV @ 50 A                       |  |  |  |
|                      |        | SEC                         | ONDARY DISTRIBU               | JTION                                                   |                                                                       |  |  |  |
|                      | JW1001 | 0,72/3 kV                   | Up to 630 A                   | GIS / AIS<br>Mounted on the bushing<br>ID Ø 82 mm       | Ring core phase LPCT<br>H=28mm for P10<br>H=50mm for P20              |  |  |  |
|                      | JW1002 | 0,72/3 kV                   | Up to 630 A                   | GIS/ AIS<br>Mounted on the cable<br>ID Ø 55 mm          | split core phase LPCT                                                 |  |  |  |
|                      | JW1004 | 0,72/3 kV                   | Up to 630 A<br>(EFD: 60 A)    | GIS / AIS<br>Mounted on the bushing<br>ID 3 x Ø 84 mm   | 3 x phase LPCT<br>2x phase LPCT & 1 x EFD<br>3 x phase LPCT & 1 x EFD |  |  |  |
| Ó                    | JW1003 | 0,72/3 kV                   | Up to 630 A<br>(EFD: 60 A)    | GIS/ AIS<br>Mounted on the cable<br>ID Ø 80/120/150 mm  | Zero current sensor or phase current sensor                           |  |  |  |

# **PRODUCT OVERVIEW – Low power current transformer**

## **PRODUCT OVERVIEW – Low power combined transformer**

| STANDARD VALUES |          |                             | SECONDARY RATED VOLTAG<br>SECONDARY RATED VOLTA  | BURDEN: 2 MΩ; 50pF<br>BURDEN: ≥ 20kΩ   |                                                                             |
|-----------------|----------|-----------------------------|--------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------|
| PRODUCT         | ТҮРЕ     | MAX.<br>INSULATION<br>LEVEL | RATED VALUES                                     | APPLICATION                            | PRODUCT FEATURES                                                            |
|                 | K1112    | 36/70/170<br>kV             | 33000/√3 // 3,25/√3 V<br>300A // 225mV ext. 200% | Combined LPIT<br>Outdoor<br>Substation | H=345mm for 12kV<br>H=398mm for 24kV<br>H=448mm for 36kV                    |
|                 | UW7000-X | 24/50/125<br>kV             | 22000/√3 // 3,25/√3 V<br>300A // 225mV ext. 200% | Combined LPIT<br>Bushing type<br>GIS   | Mechanical design on customer request                                       |
|                 | K1001    | 24/50/125<br>kV             | 22000/√3 // 3,25/√3 V<br>300A // 225mV ext. 200% | Combined LPIT<br>Block type<br>GIS     | Combination of<br>conventional and non-<br>conventional outputs<br>possible |

## **PRODUCT OVERVIEW – Electronic devices**

| PRODUCT                                                                   | ТҮРЕ | DESCRIPTION                | FUNCTION                                                                                                                           |
|---------------------------------------------------------------------------|------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| •и.<br>•а-<br>•а-<br>•а-<br>•а-<br>•а-<br>•а-<br>•а-<br>•а-<br>•а-<br>•а- | GIM  | Grid Intelligent Monitor   | Detecting and indicating short circuits<br>or ground faults<br>Monitoring, measuring, and displaying<br>operational values         |
|                                                                           | VMA  | Voltage Metering Amplifier | Amplifying the output voltage of<br>Zelisko voltage<br>sensors from 3.25/√3 V to 100/√3 V or<br>110/√3 V for metering applications |

# Product Overview – Secondary connection cable and interface

| APPLICABLE FOR | CABLE TYPE                                 | CONNECTION                              | LENGTH                                                                                                                                       |
|----------------|--------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| LPVT    LPCT   | LiYCY-OB                                   | M8 <> open ends                         | 1,7m / 3,7m / 5m / 6m / 8m / 10m                                                                                                             |
| LPVT           | CAT5e                                      | M8 <> RJ45                              | 3,7m / 5m<br>PIN (7) & PIN (8)<br>1m / 5m<br>PIN (5) & PIN (4)                                                                               |
| LPCT           | LiYCY-OB                                   | Mounted on the sensor with open<br>ends | 1,7m – 10m<br>other lengths on request                                                                                                       |
| LPCT           | CAT5e                                      | Mounted on the sensor with RJ45         | 1,7m / 3,7m / 5m<br>PIN (1) & PIN (2)                                                                                                        |
| LPVT & LPCT    | Combi-Y-Adapter<br>LI9YC(ST)11Y & LIYCY-OB | M8 <> RJ45                              | 5,7m<br>(PIN (7) & PIN (8) for LPVT -<br>PIN (1) & PIN (2) for LPCT)<br>5,7m<br>(PIN (3) & PIN (6) for LPVT -<br>PIN (1) & PIN (2) for LPCT) |

Dr. techn. Josef Zelisko, Fabrik für Elektrotechnik und Maschinenbau Gesellschaft m.b.H.

Beethovengasse 43-45 2340 Mödling Austria Phone: +43 2236 409-2229 Fax: +43 2236 409-2279 www.zelisko.com www.knorr-bremse.com



